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Abstracc

Several procedures proposed in the literature for the analysis of growth
curves are reviewed. Particular attention is given to the current issues in
this area to guide practitioners in the selection of the most appropriate

methodology.
1. Introduction

In many experimental situations, especially longitudinal growth curve
studies, data are collected on several variates and a subject is observed on

each of the variates over time. Designs with multivariate observations on P,

variates observed over q time points are often referred to as multi—response o

et § e o

repeated measures or growth curve designs.

To analyze multi-response growth.curve data obtained on ﬁ subjects, the

data are conveniently arranged in a data matrix YO(N X poq) where the first q

columns correspond to variable-cne, the next q to variable 2, the next q to
variable 3 and so on up to the psh variable.
B m

. Given a data matrix Yo with Ni subjects in m groups,X Ni = N, where for
’ i=1 ' '

simplicity suppose that three measures are recorded on each subject at q ‘time
points so that associated .with each subject are 3q measurements all correlated

with unknown variance—covariance matrix I o’ the i th growth curve for each of

the three multivariate responses may be represented by
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Employing matrix notation with the matrices B and P defined:
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(1.1) may be represented by the matrix product BP. The matrix P given above
has been represented as a super diagonal Vandermode matrix; alternatively, we
could have used unnormalized or normalized orthogonal polynomials. Letting

X (N x w) denote a design matrix, the growth curve model is represented as

XBP

il

E (Y)
(1.2) e

]

Vv (Yo) I EUZO.

N

Representing the growth curve model (GCM) as (1.2), some common multi-response

hypotheses of the form

(1.3) H: CBA=T

o pge e gy By TR T
ey £ TR 4R LN T

where C (g x m) of full rank g, A (poq x u) of full rank u, and T'(g x u) are

known matrices may be tested.

To analyze growth curve data on one variate (po = 1) observed at q time

points using (1.2), most authors reduce the GCM to a standard MANOVA or MANCOVA

“"model.” The procedures develdped using these—approaches*and~the problems encoun—:ﬂiiﬁﬂ
tered is the major topic of this paper. From the representation of ‘B and P

whether P, = 1 or po> 1 the extension to more than one variate is immediate.

“”2. Standard MANOVA Model

In a multivariate experiment involving N subjects on which p measurements
are observed, the data obtained may be represented by a (N x p) data matrix Y.
Assuming the standard MANOVA model (SMM) describes the experiment, the model for

the random matrix Y is denoted as follows.

E (Y)
v (Y)

XB

LE:

The matrix X (N x m) is a known design matrix of rank r< m< N, B (m x p) is a
matrix of unknown nonrandom parameters and I(p x p) is a positive definite (p.d.)

Variance—covarie?ce matrix of any p—variate row vector of Y.

- SISO

e - In 'the SMM, we are usually interested in estimating linear. parametric func—

tions of the form ¥=c'B a and sets of functions of the form CBA where c(m X 1),

A 4
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a(px1l), C(gxm and A (p x u) are known, the R(C) = g and the R (A) = u.
Assu@ing pis estimable, c belongs to the space spanned by X'X or equivalently

¢' = ¢'H where H = (X'X) (X'X), Rao (1973) and Roy (1975) have shown that the

~

best linear unbiased estimator (BLUE) of ¢= c¢'B a when it is estimable, is. ..

given by

i
v= c'Ba
(2.2) ~ ~
B X' x'y

P e L st ke

>

]

TR TR R e d L
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The variance of yis
(a'za) (c"(X'X) ¢)

(see, e.g. Timm, 1975, Section 3.6). Considering the linear set CBA, Roy (1964)

~

showed that if“CBbA is any . other_unbiased estimator of CBA, other than CBA, that

V(CBOA) -~ V(CBA) is (p.s.d)

ch e VBT 2 chp, [V(CBA)]

Tr [V(CBOA)]> [Tr V(C;A)]
lv(c_a) |> lv(cea) |

where the V(CBA) = C(X'X) C'@ A" L A.

_Hence, Y= CBA is a unique solution in terms of the minimization of the trace :

criterion, and the generalized variance criterion because of the strict inequality. -

AlthoughY yields a minimum in terms of the maximum root criterion, the solution

is not unique.

The estimation'of‘yunder‘Z.l,'the“multivariatemGauss—Markoﬁﬁmsetup,.doea_,_u;-~

not require distributional assumptions about the row vectors of Y. 1f, however,
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we assume that each of the rows of Y are independently normally distributed, then
. maximum likelihood estimators of the functions of B may be obtained. Writing the

likelihood .function as

(2.4) (@) /2 |y W2

exp [ —-% tr g L (¥-xB)' (¥Y-XB) ]

and solving the likelihood equations, the maximum likelihood estimators (MLE's)

of B'and I are:

~

B= (XX) X'Y
;59 _
2=Y(I-X (XX YN

Hence, the MLEWEENEEK#EE'identical to the BLUE. I is the unique MLE of £ ; to
obtain an unbiased estimator, % is multiplied by N/(M-r). '

prothesis testing under 2.1, assuming normality, takes the general form

(2.6) H : CBA=T

.where C (g xm) is a known matrix of rank g<m, A (p x u) is a known matrix of
rank u<p, I (g x u) is a known matrix (usually a zero matrix) and CBA is esti-~

mable. Defining hypothesis and error sums of squares and products matricgsbof

the form
(2.75 Qh = (cfsA -T)' (C (x’x)'c')"1 (CBA -T )
Q, = A'Y (I - X (X'X)"X')YA
and
A

e 11 2 s

where s = min (R (C), R (A) ), numerous test criteria have been proposed to test

| Ho. They are:

Wilks' Lambda Criterion -

i e " . L et v g




Hotelling's Trace Criterion -

: S
Lyo1a

Tr (Qth =
i=1

i

Roy's Largest Root Criterion -

-1 -1 1
= A = = R st
Pillai's Trace Criterion -~
-1 S ' S . Ai
Tr (Q (Q+Q) ) = % 8. =1E —
h "h ‘e . A
i=1 Cdi=1 1Ay

Another criterion, although not extensively tabled ihcludes:

Roy's Minimum Root Criterion - ch_(Q,Q ~1) = A
s "h'e . s

Although nd one criterion is uniformly most powerful, the studies of
Schatzoff (1966) and Olson (1974) show that under normality Roy's criterion is
best for certain restrictive alternatives and that Wilks' criterion is best for
a wide class of alternatives. The best robust criterion appears to be}Pillai's

trace criterion.

3. Potthoff and Roy Model

C e

While the SMM is applicgglé“in many experimental situations, the model has
several limitarions if an experimentér wants fbwénalyze and fit growth curves
to data collected over time. To analyze data obtained from a growth curve ex-
periment, Potthoff and Roy (1964) developed the groﬁth curve model (GCM) which

is a simple extension of the SMM,

The model considered by Potthoff and Roy is given by

E(Y )=XBP
(3.1) °

V(Yo)='IN B Zd'

where Y (N x q) is a data matrix, X (Nﬁx m) is a known design matrix, B (m x p)

is a matrlx of unknown nonrandom parameters, P (p x q) is a known matrix of full

ety e e

rank.p_ﬁqw—&am(qu-q)~1s~p d-»and~the~rows~of—¥—are—independently“normully*distrlbuted




Comparing the GCM with the SMM, we see that only the post matrix P has
been added to the model. This implies that each response variate can be ex- s
pressed as a linear regression model of the form
N o
E(y)) = P' By

where v; (q x.l) is the observation vector for the ith subject and B, is a

vector of unknown parameters.

+

To analyze (3.1), Potthoff and Roy suggested the transformation

(3.2) Y = YOG-]."P' (PG_]‘P' )'1
where G(q x q) is any symmetric positive definite weight matrix either non-

stochastic or independent of Yo such that PG_lP' is of full rank. Employing

the transformation in‘ (3.2), the matrix Y(N x p) will be distributed mutually

independently normal with unknown p.d. variance-covariance matrix

I = [P(G')"lr'z'lp(c')'l zoc"lP'(PG'lp')"l

(P x p)

i

‘and mean E(Y) = XB. Hence, by using (3.2) we have reduced the GCM to the SMM ~

with minor limitations on the selection of G.

Moti#atién for the selection of the transformation in (3.2) by Potthoff
and Roy is contained in Appendix B of their (1964) paper; they show that the
BLUE of an estimable linear parametric function ¢ = c¢'B a (where the estima—
bility conditions are that c belongs to the space s;ann;d by X'X and a belongs

to the space spanned by the columns of P) is given by

. ~
c'B.a

~ -~

(3.3) |

0y <=
1

]

- -1 : -1 -1
1 A\l t (P 1
(X'®) X'Y_r P('ZQ P')

Since_(3.1) reduces_to (2.1) under (3.2), we see that upon substituting Y in

(3.2)_into_(2.2) that




B = (x'x)"x'YOG“] P (pc eyt
ww.with G replacing Zo in (3.3), is very close to the BLUE.
To test hypotheses of the form

(3.4) H_: CBA =T

for Qh and Qe in (2.6). The degrees of freedom for the hypotheses is.Q = R(C)=g

h

and the'degrées of freedom for error is ve=N—R(X)=N~r.‘

Settingl =0 in (3.4) and letting Y be defined as in (3.2), the hypotheses
and error sum of square and products matrices take the following form.

4

g, = A'Y'IE0TC (CX'D CH e D X' YA

(3.5) . _
Qe = A'Y' (I-X(X'X) X")YA
where 2% = g and Vo = N-r. |
Under the 'SMM, we said that no criteria is uniformly most powerful. This is
also the case for the'GCM; however, in the GCM we have the additional problem of
selecting the weight matrix G when p <q. If p=q, the transformation in (3.2) re~
duces to
-1

Y=YP
o

1

or if P is an drthogonal matrix so that P*~ = P',

. =Y, P

and thére is no need to choose G. This was the approach taken by Bock (1963a)
and the one used in the development of the NYMBUL package, Bock (1963b) and
Finn (1972). If p <q the choice of G is important since it affects the variance
ofw;which increases as G_1 departs from Zo—l, the power of the tests and the

widths of confidence bands.
A‘simple.choice of G is to set G=I. Then
Y=Y _P' (PP' y™t

Such a choigé of G will certainly simplify gpe's calculations; however, it is

not the best choice in terms of power since information is lost by reducing




Yo to Y unlqss'G'iS“Sét“éQﬁal'to“ZSITWThéﬁégfiﬁﬁf3f“3f7ﬁéfﬁ'B¢EZWWhen it is

estimable and G is set equal to I, is the BLUE oftpassumingz, 5“021. R

{ 4. PRao-Khatri Conditional Model

To try to avoid the arbitrary choice of the matrix G in Potthoff and Roy's
model and its effect on estimates and tests, Rao (1965, 1966, 1967, 1972) and ~
Khatri (1966) independently developed an alternative reduction of model (3.1) to
a conditional model. '

(4.1) E(¥|2)= xBei

where Y (N x p) is a data matrix, X(N x m) is a known design matrix, B(m x p)
is a matrix of unknown nonrandom parameters, Z(N x h) is a matrix of covariates

and I (h x p) is a matrix of unknown regression coefficients.

el

To reduce (3.1) to (4.1) aq x g nonsingular matrix H= (HIHZ) is constructed

so that the columns of Hl form a basis for the vector space spanned by the rows’

of P, PH, = I and PH, = 0. When the rank of P is p, H

1 2 and H, can be selected .as

1 2

L W ~1.1y-1 = T
Hl = G P'(PG "P') "HZ =1 HlP

where G is an arbitrary positive definite matrix. Such a matrix H is not unique;

however, estimates and tests are invariant for all choices of H satisfying the

 specified conditions (see Khatri, 1966). Hence, G in the express1on for H, does

1
not affect estimates or tests under (4.1). By setting

-y ¢ lp e eyt

Y=YH =Y

i

(4.2)

Z = Y0H2 -

E(Y) = XB and E(Z) = 0; thus, the expected value of Y given Z is seen to be of
the form specified in (4.1), Khatri (1966) and Grizzle and Allen (1969) Using
(4.1), the information contained in the covariates Z = YoHZ’ which is ignored

5

in the Potthoff-Roy reduction, is utilized.
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Both Rao and Khatri argued that the BLUE under the conditional model of

) = ¢'B-a is more efficient than that obtained by Potthoff and Roy since their

”estimator includes information in Z ignored by Potthoff and Roy. This is not

the case. As shown by Lee (1974) and Timm (1975) employing the standard multi-
variate analysis of covariance (MANCOVA) model,

>

4.3) B = x'0xy s ter es7ie)T

Khatri (1966) using the maximum likelihbed proce-

where S = Yé (I-x(x'X)"x')Yo.
dure obtained the same result for B. ~

e Thus, if p< q,; Rao's procedure using q-p
covariates, Khatriwusing.maximumﬁlikeiihood methods and Potthoff and Roy‘s_methdd

weighting by G.-1= -1 are identical. Setting G=I in the Potthoff and Roy method

is equlvalent to not including any cavariates in the Rao-Khatri reduction. When

p q, H2 does not exist; thus, the Rao-Khatri model is not applicable.

Testing the hypothesigum
H: CBA=T
o

where I'= 0, is not the same under the Potthoff and Roy and %ax-Khatri reductions.

Employing the standard MANCOVA model, K
Q= A'Y'X(X'X)”C' (CRC' )"lc(x'x)’x'YA “;' . "\\
(4-4) Q= A'esT'E) A | | :
where
R = (X'X) +(X x)"x'Yo(s"l—s"lp' (Ps‘lp')"lps'l)yox(x'x)’
v =y s s e

V= 8 V= N-r-h and h=q-p.

\

Although Potthoff and Roy's approach does not allow G to be stochastic unless

it is independent of Y , it is intefesting to compare (3.5) and (4.4) if G=sS.
Then




.+ a test procedure to test

AT (I-X(X'X)~X')YA

o
i}

]

A (ps tp )‘lPs"lY (1-x(x' X)X )YOS'lP' syt R
A (ps 1Py lp 1(PS 19'

= A" (PS P )

]

which except for the degrees of freedom for error is identical to Qe obtained

under the Rao-Khatri reduction. The sum of squares and products matrix Qh,

however, is not the same.

The development of the GCM by Potthoff and'Roy End the subsequent Rao-Khatri
reduction has caused a great deal of confusion among experimentors trying to use
the model in growth curve studies. The first major paper which helped to clarify
and unify the methodologies was by“Grizzle and Allen (1969). They also develop a

procedure for selecting only a subset of the q—p'covariates.

5. Standard GCM

Potthoff and Roy's analysis of the GCM was developed by introducing the

transformation
¥ = v ¢ ereee eyt (

to reduce the GCM to the SMM. To avoid haVing a test procedure that;was dependent B
on an athitrary positive definite nattix G, Rao (1965).and Khatri (1966) proposed

an alternative reduction to the standard MANCOVA model which did not depend on G.

Their procedure,as discussed by Grizzel and Allen (1969), depends on selecting

the "best" set of q-p covariates. In addition, one may question the . use of co—‘.'

variates that are part of the transformed variables of the dependent variables‘

being analyzed. To avoid these problems, Tubbs, Lewis and Duran (1975) developed. ‘

H: CBA=T
o .
emploiing maximum likelihood methods directly under the GCM.
Under the GCM, the maximum 1ikelihood estimatc; of B, is

e T s e e

(5.1) : B= (X% X:'YOS~ p' (ps”tp) L

12



and under Ho CBA =T,

(5. 2) ﬁH - B~ (X'D7C XD )L (cBA - T )ar (ps~ Iy aytar (ps~lpry
o . .

Using the likelihood ratio criterion due to W*

q = (CBA-T)' (c(x'RC) )
(5.3) Q = ates eyl
‘whére v, = 8 and v, ?,N—r'
| C&ﬁparing this‘resultlwith that proposed by Ra§ and"Kﬁaf R Seedthéﬁ;

- each Qh is‘differént, but have the same degrees'of'freedom‘and'un - Qe is identical-

PRS-y

for both procedures, but have different degrees of freedom. However, as pointed
out by Kleinbaum (1973), both procedures are asymptotically equivalent since they
have the same asymptotic Wishart distributions. No information is available about

- the two-procedures-for-small -samples-or-about the relative power of.each procedure.. -

6. Kleinbaum's Generalized GCM

In the analysis of growth curve.data, obsefvations étvSOme time points are
missing either by chance or design so that each dependent variate is not measured
on each subject. In addition, the design_patrix X ﬁay not be th‘same for each
dependent ‘variate. While these problems have been discussed in thébiiferature
by Trawinski and Bargmann (1964), Srivastava and Rby (1965) and Srivastava (1966,
1967, 1968), extending the theory of the SMM, Kleinbaum (1973) developed a genér-
alized growth curve model (GGCM) for estimating and testing hypothesis when
observations are missing either by chance or design with different design matrices

corresponding to different response variates.

To develop the GGCM, we assume we have N subjects with observations taken at
'q time points. Because of the incomplete data, the N subjects are divided into s

disjoint sets Sl’SZ”"" SS where Si contains Ni subjects. For i=1,2,..., s,uN_,o‘ij;

13




measurenents are obtained at 4y <4 time points. Letting C& (g x qi) represent

an indicator matrix which specifies at which time points data in the set 3, are

i
obtained, the GGCM is represented as

= e
E(Yoi) XiB P i
(6.1) | . 1=1,7 ...,s
= Q'
V(Yoi) INiE i z o 1

- th .
where Yoi(Nix qi) is Fhe data matrix’¢or the i~ set Si,Xi

matrix for set”Si,B(m x p) is the matrix of unknown parameters, P is a known

(Ni x m) is the design

matrix of full rank p and Oi (g x qi) is an indicator matrix of O's and 1's for
the set S, . Analogous to the GCM, we asgymekthatﬁxoi;agd«XO{ii:ﬁil)mare_indefnm<m,
pendent and the xows of Yoi are normally distributed.

Implicit in 6.1 is the fact that each subject in the experiment is from the

© e e

same family s that P, = P 6, and

= p!
BCty) = B B

where Yij (qi x 1) is the vector valued observation of . the jth subject from séf Si.

As discussed by Srivastava (1967) and more generally by Kleinbaum (1970),
; to obtain BLUE of every parametric function)= c' B a in complex multivariate
| linear models (linear models with design matric;s th;t are not the same for each
dependent variate) that are independent of the unknown elements of the variance~
covariance matrix, requires additional restrictive conditions on the model (see, -
e.g. Kleinbaum, 1970, p. 58). This led Kleinbaum (1973) to consider Best Asymp-
totically Normal (BAN) estimators for the GGCM which use consistent estimators
of Zo and generally yield nonlinear estimators with variances that afe in l?rge

samples the minimum that could be achieved by linear estimators if Zo were known. '

- To obtain a BAN estimator For an estimable functiony= c'B a in the GGCM,

(6.1) is conveniently represented in‘vector'notation as

14
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“;proposes _the Wald statistics,

* = ' *
E(Y oi) ( ei‘P Xi)§
i=1,2,...,s

* = ' _ . e
V(}: oi) 01z 0, Iy

. ‘ .
where Y oi (Niqixl) is obtained from Yoiby rolling out Yoi columnwise and

B*(mp x 1) is the columnwise version of B. Applying the general univariate
least squares theory to (6.2), withilo any consistent estimator of I o* 2 BAN

-estimator of yis ¢ = c'B a where

~

._1 . .-S ‘ ' n -1
* = v v 1 S B X Yv*
B zPe((ez 0}) TOIP'E X} S o, (O Eoei)‘ﬂxi)zoi

—1

iand B* is the columnwise representation of B.

To test the null hypothesis H : CBA -Pusing the GGCM Kleinbaum (1973)

= TRATY? t oot ' - ' 1 'A -
WN (C BA T) (Ciz:::{ei (Gi (GiZOGi) eiPi "X X ) C) (C B A -T)
and .
s AT
N = (C' B A -T)" (cC' (2{’%‘(6'2 G ) G P' 8 Q ) C) (C B A-T))
= T \ 1 ] ]
where Q Xixi X Y F (FiYoi Y F ) FiYoiXi
”Tand Fi i a column basis for i- P'(P ) i so that PiFi = 0.

Comparing the Wald Statistics with the test procedures proposed employing
the GCM, WN/N is equal to the LRT procedure and Wﬁ/N is equal to the Rao-Khatri

method using the Lawley-Hotelling Trace Criterion.

15
14



7. Summary

To test hypothesis -of the form Ho: CBA=0 assuming a GCM with p <q, three

approaches have been suggested to applied researchers over the past decade.

Potthoff and Roy -
Using the transformation Y=YOG_'1P'(PG'-]'P')_1 and forming the estimator

B=(X'X)—X'Y, the hypothesis and error matrices are formed:

Q = A'Y'X @' e (') ¢ c(x'x) “x'va

—-sf% NTxe
Q, Li=SE L XT)YA

where vy = 8 = R(C), v, = N-r and G is any symmetric .p.d. weight matrix either

non—stochastic or independent of Y snch that PG—lP' is of full rank.

Tubbs, Lewis and Duran -

Using maximum likelihood procedures which is equivalent to setting G=S
in the Potthoff and Roy model, they obtain

~

B

]

(x'x)'x'yos'lp' (Ps"lp')‘1 = (X'X) X'Y

i

Q ATYX(X'X) C'(CX'X)¢C' y Lo x)"x'YA

Q= x,'"z'(r X(X'X) ~x' }yA=aT (ps 1pry T

=%

. ‘ I T |
= = : -— S= ' — ' ' = B '
where vy = 8 RrR(C), v N r, Yo (I X(X'X) " X )Yo and Y YdS (PS "P")

Rao-Khatri -
Using a conditional model with

B = (x'X)'x'Yos"lP'(Ps"lp')"l = (X'X) X'Y
Y = YOS—lP'(PS-lP')“l
S = Y' (I-X(X'X)"X")Y

(o] (o]

the matrices
Q, = AT X(X'X) ¢ (CRCTY Te(X'X) TX'YA
Q= 4 es~teyla
R - ;x'x)‘+(x'X)'x'Yo(s"l—s"lp'(Ps"lp')“lps"l)YOX(x'X)'

are formed where‘\)h = =R(C) and v, = N-r-qg+p.
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While the procedure set forth by Khatri has been "accepted" as the usually
procedure employed in growth curve studies over the years and is asymptotically
e eequissadent to Ehe procedure proposed by Tubbs, lewis and Duran, we do not know
which of the procedures are best in small samples. Perhaps the determination
cannot be answered on the bases of power, but on whether in assessing growth
the notion of conditional versus unconditional inference is being raised, Bock
(1975).

While the work of Kleinbaum has begun to address the data problems we have
in analyzing data in the behavioral sciences, his precedure may 1ead to spurious
test statistics since it depends on the method used to estimate 20 in the con-

struction of the BAN estimator.
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